Extensions 1→N→G→Q→1 with N=S3xC32 and Q=S3

Direct product G=NxQ with N=S3xC32 and Q=S3
dρLabelID
S32xC3236S3^2xC3^2324,165

Semidirect products G=N:Q with N=S3xC32 and Q=S3
extensionφ:Q→Out NdρLabelID
(S3xC32):1S3 = S3xC32:C6φ: S3/C1S3 ⊆ Out S3xC321812+(S3xC3^2):1S3324,116
(S3xC32):2S3 = S3xHe3:C2φ: S3/C1S3 ⊆ Out S3xC32186(S3xC3^2):2S3324,122
(S3xC32):3S3 = C3xS3xC3:S3φ: S3/C3C2 ⊆ Out S3xC3236(S3xC3^2):3S3324,166
(S3xC32):4S3 = S3xC33:C2φ: S3/C3C2 ⊆ Out S3xC3254(S3xC3^2):4S3324,168

Non-split extensions G=N.Q with N=S3xC32 and Q=S3
extensionφ:Q→Out NdρLabelID
(S3xC32).S3 = S3xC9:C6φ: S3/C1S3 ⊆ Out S3xC321812+(S3xC3^2).S3324,118
(S3xC32).2S3 = C3xS3xD9φ: S3/C3C2 ⊆ Out S3xC32364(S3xC3^2).2S3324,114
(S3xC32).3S3 = S3xC9:S3φ: S3/C3C2 ⊆ Out S3xC3254(S3xC3^2).3S3324,120

׿
x
:
Z
F
o
wr
Q
<